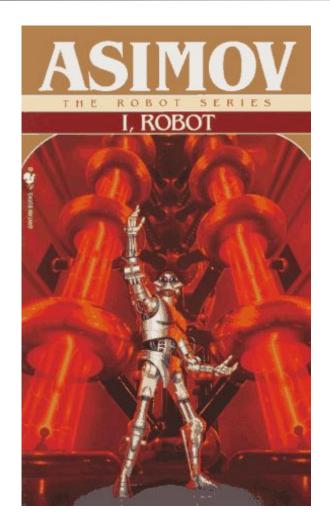
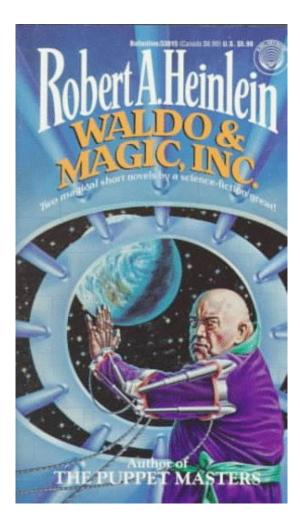


Is your guess as good as mine?

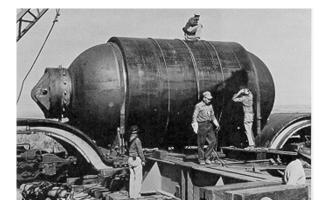

Thoughts on Engineering Progress From


Ronnen Levinson, Ph.D. Environmental Energy Technologies Division Lawrence Berkeley National Laboratory http://ronnen.com

Today's Topics

- Progress in Engineering
 - Fantasies
 - Faith
 - History
 - Que sera sera or not?
- My Story
 - $\scriptstyle \bullet$ Clean energy to save the world \odot

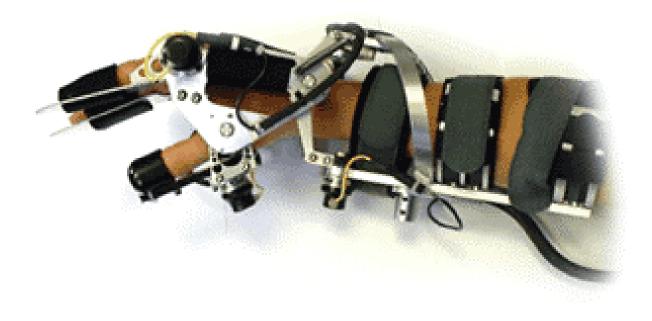
FANTASIES from the Golden Age of Science Fiction


Technology of 1940s

- Age of
 - Rockets (e.g. Werner Von Braun's V2)
 - Atomic bombs (Manhattan Project)
 - Large, slow computers (ENIAC)

Captured V2 Rocket

"Jumbo" (unused bomb)



Outlook of Science Fiction, 1940-1950

- Extrapolated 1940s technology
 - Interplanetary travel
 - Portable atomic power
 - Huge computers
- Missed revolutions in electronics
 - Microcomputers
 - Lasers

What Came True: Heinlein's Waldos

Remote controls for tools

Still Far Off: Asimov's Intelligent Robots

Today's industrial robots <u>do not</u> obey Asimov's "3 laws of robotics"

- (1) A robot may not injure a human, or allow a human to be injured.
- (2) A robot must follow any order given by a human that doesn't conflict with the First Law.
- (3) A robot must protect itself unless that would conflict with the First or Second Laws.

FAITH in Progress

- How little we know...
 - "Prediction is very hard, especially when it's about the future" — Yogi Berra
- Intuition shaped by
 - history (time horizon)
 - education (what we've been taught)
 - experience (what we've found out for ourselves)

HISTORY of Progress

 New York Public Library Desk Reference lists significant inventions and scientific discoveries from 12,000 B.C. to now

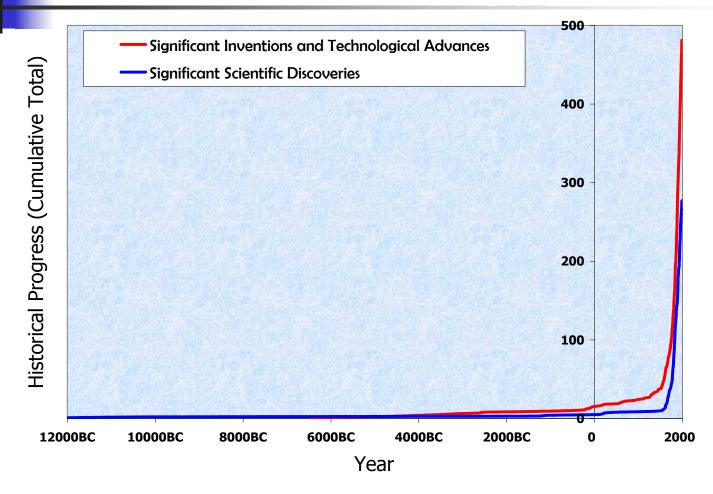
The New York Public Library DESKREFERENCE

COMPREHENSIVE •

THE ONE-VOLUME COLLECTION OF THE MOST FREQUENTLY S O U G H T INFORMATION

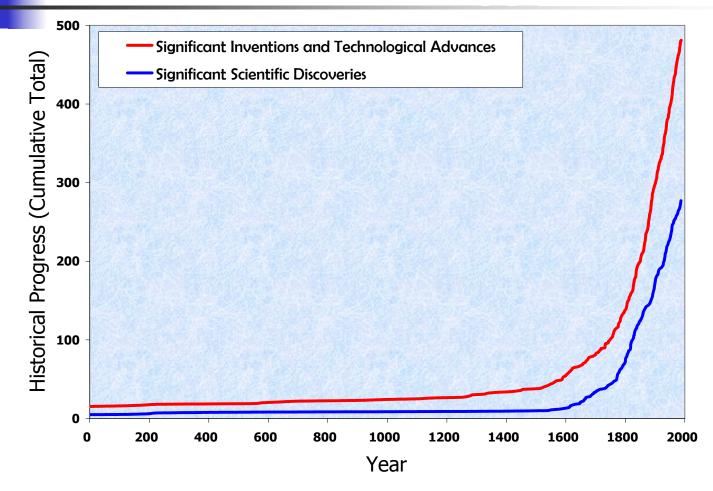
Significant Discoveries and Inventions of the 1940s

Science

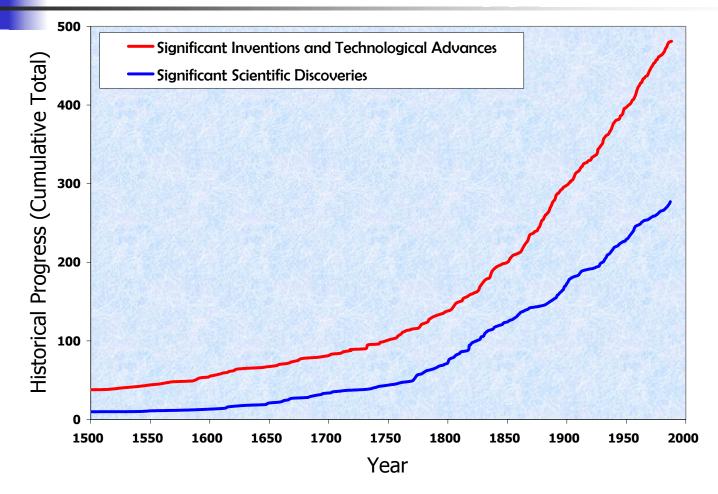

Year	Discovery
1940	Plutonium
	Vitamin H (biotin)
1943	LSD
	Streptomycin Americium
1944	Americium
	Curium
1947	Coenzyme A Vitamin B ₁₂ as cure for pernicious anemia
	Vitamin B ₁₂ as cure for pernicious anemia
	Radiocarbon dating
1949	Berkelium

Engineering = Applied Science

Engineering


Year	Invention or Achievement
1940	Radar
	Automatic transmission
1941	Microwave Radar
	Darcon
1942	Manmade atomic reaction (Manhattan
	Project)
1943	Teflon
1944	Pyrex telescope lens
1945	Artificial kidney
	Atomic bomb
	Tupperware
	Vinyl floor covering
1946	Electronic vacuum tube computer (ENIAC)
1947	Holography
	Supersonic aircraft
1948	Transistor
	Atomic clock
	Cybernetics
	Long-playing phonograph record (microgroove record)
	• – •
	Solid electric guitar
	Velcro
1949	Jet airliner

Advances Since 12,000 B.C.


data: New York Public Library Desk Reference (1989)

Advances Since 0 A.D.

data: New York Public Library Desk Reference (1989)

Advances Since 1500 A.D.

data: New York Public Library Desk Reference (1989)

Stories of the Inventors and Inventions

Recommended: American Heritage of Invention & Technology

http://AmericanHeritage.com/it

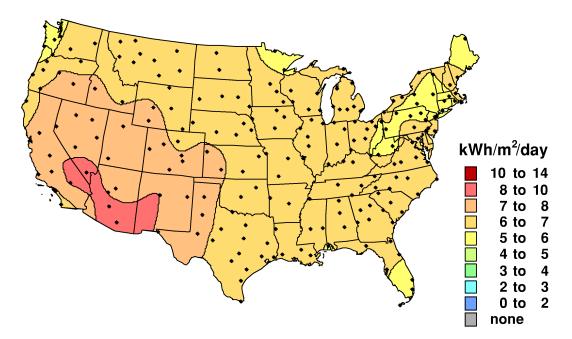
QUE SERA SERA? Or Not?

- What will the future bring?
 - Ask the experts, or
 - Make an educated guess
- For example, consider...

Question: Are Solar-Powered Cars Practical?

Approach: compare energy in sunlight to energy needed to propel car

Formula Sun Solar Race Car



Honda Civic Sedan

Solar Energy

- On a typical June day in California, daily solar energy intensity is 8 kWh/m²
- 1 kWh = 100-watt light bulb x 10 hours

Engine Energy

- Engine power measured in horsepower (HP), where 1 HP = 0.75 kW
- Typical compact car has 100 HP engine
- 1 kWh = 80 HP engine x 1 min

How Long Can an 80-HP Car Engine Run on Solar Energy?

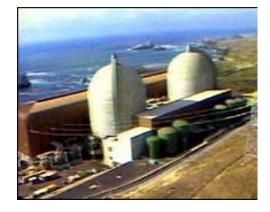
- With 1 m² of solar cells on car
 - 100% efficiency \rightarrow 8 min/day
 - 25% efficiency \rightarrow 2 min/day
- With 100 m² of solar cells on building
 - 100% efficiency \rightarrow 800 min/day
 - 25% efficiency \rightarrow 200 min/day

Answer

Solar cars require charging station

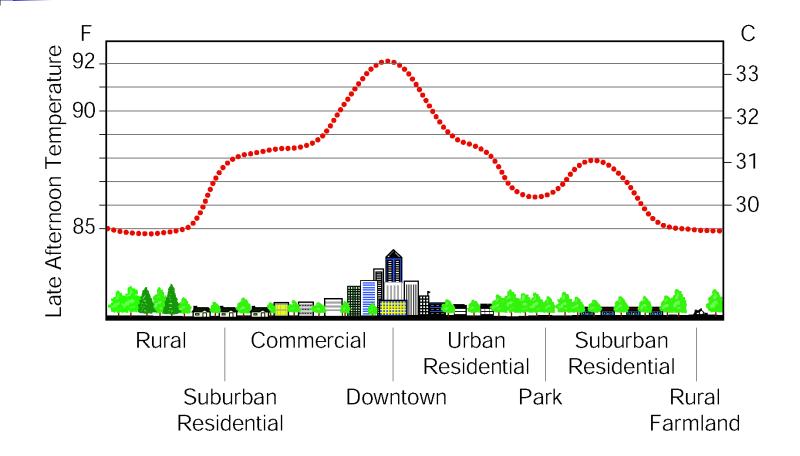
Role of Energy In Human Progress

- Abundant energy fundamental to meeting our physical needs
 - Short-term (< 500 yr): fossil fuels</p>
 - Long-term: renewables, nuclear

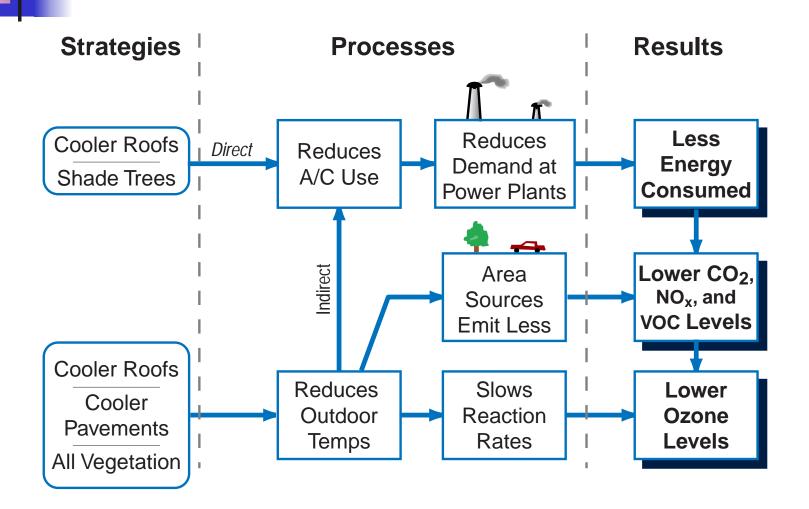


Energy Budget: Match Supply, Demand

- Meet long-term energy needs via
 - increasing production (renewables, nuclear)
 - decreasing demand (energy efficiency)
- Example: replacing 100-W incandescent light bulb with 25-W compact fluorescent light bulb saves
 - ~ 2 kWh of electrical energy per day
 - ~ 6 kWh of fossil fuel energy per day (generators are only about 1/3 efficient)


MY STORY: Clean Energy And Energy Conservation

- Education
 - B.S. engineering physics (Cornell)
 - M.S., Ph.D. mechanical engineering (Cal)
- Mission
 - Improve the world through energy conservation ("negawatts"), clean energy production


Current Research

- Scientist @ Lawrence Berkeley Laboratory
- Member of Heat Island Group
- Our goal: cool cities in summer
 - Reduce air-conditioning use (save power and energy)
 - Lower ambient air temperatures (cool the outdoors)
 - Improve air quality (reduce smog)

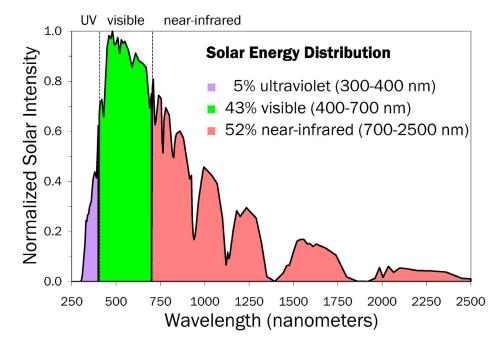
Hot City in the Summer

How To Cool Cities

Sample Project: Cool Colored Roofs

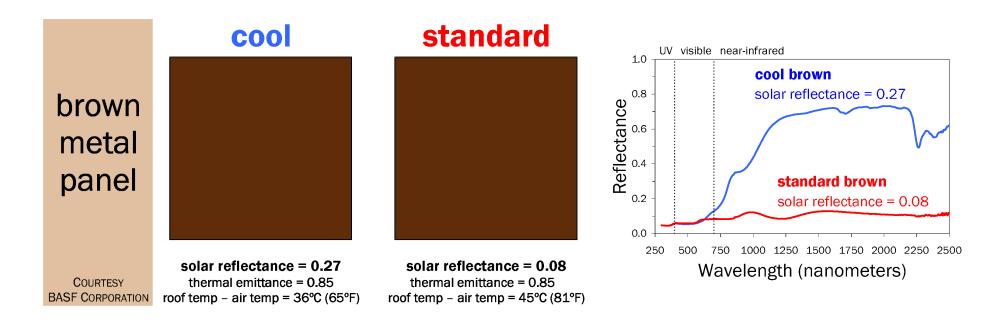
- Cool roofs (e.g., white roofs)
 - reduce air conditioning use
 - improve air quality
- But white roofs unpopular for houses

dark roof — typical



white roof — rare

What You Can't See...


- More than half of the energy in sunlight is invisible near-infrared (NIR) radiation
- NIR-reflecting dark colors can be cool

Cool Dark Metal Roofing

"Cool" brown vs. standard brown

- 3 times more reflective (0.27 vs. 0.08)
- Iooks the same but 9°C (16°F) cooler

Final Thoughts

- Your guesses about the future of engineering are as good as mine if you do the math.
- Wise progress in science and engineering can make the world a better place.